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Optical guiding in a Raman free-electron laser (FEL) is studied theoretically and experimentally.
Two complimentary theoretical approaches to the problem of optical guiding in a waveguide con-
taining a filamentary electron beam are given and shown to be in good agreement with each other in
the exponential gain regime. Evidence for optical guiding of 2-mm-wavelength radiation along the
electron beam in the Columbia University FEL is obtained experimentally by analysis of spatial
“ring-down” data of the optical wave profile and compared with numerical simulations. These data
are presented for the exponential gain regime. A similar experiment at signal saturation conditions
shows a much less well-defined ring-down. We give plausible experimental as well as theoretical ar-
guments why the ring-down pattern is less well defined. Based on the observations presented in this
paper, it is not possible to validate optical guiding at saturation.

I. INTRODUCTION

In a free-electron laser (FEL), the electron beam is not
only the source of energy for the radiation field, but can,
in addition, distort the wave front and alter the phase ve-
locity of the radiation. The modified index of refraction
can then cause the optical beam to propagate almost
self-similarly along the electron beam despite the pres-
ence of arbitrarily strong diffraction. This effect, known
as optical guiding,'* has been the subject of consider-
able theoretical research recently.’”'* Two qualitatively
different mechanisms for guiding have been elucidated in
the literature.!* The first one is gain guiding, in which
loss of optical power by diffraction is compensated for by
the amplification of the radiation. In order that gain
guiding may dominate, a necessary condition is that the
gain length be shorter than or comparable to the Ray-
leigh range for the radiation. The second mechanism,
and more subtle than the first, is refractive guiding which
can occur even if the gain length is larger than the Ray-
leigh range. The occurrence of refractive guiding in-
volves the phase shift of the radiation. In the linear re-
gime, the real and imaginary parts of the refractive index
(n) characterizing the electron beam’?>!>1® can, under
certain conditions, satisfy the relation Ren > 1 due to the
phase shift even when the gain, proportional to Imn, is
negligible. When refractive guiding dominates, the self-
similarity of the optical beam results from the interfer-
ence of refracted wave fronts which compensate exactly
for diffractive losses. Since refractive guiding does not
rely on the presence of intrinsic gain, it can occur at satu-
ration, which can be beneficial for the performance of
long, “tapered” FEL’s.

There have been a few experimental observations of
optical guiding. The experiment at Los Alamos National
Laboratory!” has shown a “bending” effect of the radia-
tion contained in the optical resonator. Optical guiding
influenced by gain guiding effects has been observed in
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the Stanford University FEL.'® The MIT experiment,'’
originally interpreted as evidence of optical guiding, is
now understood to be wave-profile modification induced
by electrostatic effects. For a valuable commentary on
the Stanford and MIT experiments, the reader is referred
to Ref. 20.

Experimental evidence of optical guiding obtained
from the Raman FEL at Columbia has been reported re-
cently.?! The experiment is done in a highly overmoded
waveguide, and optical guiding is detected by measuring
the spatial “‘ring-down” of the amplified radiation at a
point downstream from the termination of the electron
beam, using a waveguide probe. The measurements show
that optical guiding occurs in the regime of exponential
growth, under circumstances for which the Rayleigh
range (~2.5 cm) is considerably shorter than the e-
folding distance of power growth (~10 cm). The ring-
down data at saturation are much less well defined, and
we therefore make no claim on the validity of optical
guiding at saturation based on those data. Apart from
the spatial ring-down data, there is independent experi-
mental evidence for refractive optical guiding in the
Columbia experiment based upon observations of the
FEL sidebands. The latter is described in detail in a com-
panion paper,?? and will not be repeated here, except for
the remark that the diagnostic for the guiding involves
only the specturm of the FEL radiation and is therefore
entirely nonperturbing. In this paper, we amplify on our
earlier work,?! and correct a flaw, pointed out by Frucht-
man,? in our numerical work® which neglected the effect
of TM modes. (Fortunately, this effect does not alter
qualitatively our earlier interpretation and conclusions.?!)
Our present numerical results, obtained by expanding the
optically guided waves in a complete set of vacuum
waveguide modes, is shown to be in agreement with
Fruchtman’s analysis in the exponential gain regime.

We now give a plan of this paper. In Sec. II, we de-
scribe the experimental setup. In Sec. II we formulate
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TABLE I. Free-electron laser parameters.

Undulator period (helical) 1.7 cm
Undulator length 60 cm
Electron-beam energy 800 kV
Electron-beam pulse length 150 nsec
Beam current density 1-2 kA/cm?
Electron-beam diameter 4 mm
Drift-tube (waveguide) diameter 18 mm
Effective “wiggler parameter” (eB, /k,mc?) 0.2-0.4
FEL wavelength 1.9 mm

the nonlinear FEL equations required to study optical
guiding in a waveguide environment by representing the
optical wave in a complete set of TE and TM modes.
These equations are used to simulate numerically the
Columbia University experiment. In Sec. IV, we describe
Fruchtman’s linear fluid theory applied to the Columbia
University experiment, and demonstrate agreement of
this calculation with the numerical results from the for-
mulation described in Sec. III. In Sec. V we present ex-
perimental results together with simulation results both
in the exponential gain regime and at saturation. We
conclude in Sec. VI with a summary and a discussion of
the implications of our results.

II. EXPERIMENTAL SETUP

A schematic of the experimental apparatus is shown in
Fig. 1 and a set of typical parameters which character-
ized the FEL performance and geometry is given in Table
I. The diode, accelerator, and electron-beam diagnostics
have been described elsewhere.?* Because of the 2-mm
wavelength, the FEL operates as a traveling-wave
amplifier of noise which is present at its input. This re-
sults in a statistical variation of the output power, requir-
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ing the averaging of many shots taken under nearly iden-
tical accelerator conditions. To preserve the axisym-
metry of the beam termination in the large waveguide,
the beam strikes a polyethylene ‘““witness plate” which
permits approximately 80% of the incident radiation to
pass through to the detector. This radiaiton is no longer
optically guided, but its pattern of downstream interfer-
ence is uniquely determined by the boundary condition at
the beam termination. Figure 1 shows the setup where
the spatial pattern of power in the waveguide following
the termination of the electron beam is examined using a
small “waveguide probe.” This probe consists of a dielec-
tric needle horn inserted into a 2-mm-diam cylindrical
waveguide which transports the radiation to a Schottky-
barrier detector which is sensitive to short-wavelength ra-
diation transmitted through a mesh filter. The waveguide
probe is sensitive to radiation in a narrow forward-
directed lobe of half-width 10°. The electromagnetic
(EM) fields induce a wave on the dielectric element,
which itself couples radiation into the miniature
waveguide. The design is such that radial resolution ( ~1
mm) is purchased at the expense of axial resolution (~1
cm). On the other hand, we also will report measure-
ments of the total power output of the FEL, in which
case the waveguide probe is removed from the pipe and
the detector is placed downstream well beyond the vacu-
um window of the FEL. The FEL does not oscillate be-
cause of the polyethylene plug and the absence of a high
reflectivity surface at the end of the FEL. The position of
the plug can be varied along the axis of the undulator.
The experiment uses a constant magnetic field (1 T) for
guiding and focussing of the electron beam; this magnetic
field has almost no effect on the FEL other than to
enhance the quiver motion of the electrons that is driven
by the helical undulator “pump” field. The undulator is
designed with an adiabatic entry and exit zone of a slowly
varying pump field B,. The “effective” pump strength
parameter is defined as @, =|yv,/c|, where v, is the ac-
tual electron quiver velocity due to the undulator.
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FIG. 1. Schematic of the experimental apparatus.
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III. FORMULATION OF NONLINEAR EQUATIONS
IN A WAVEGUIDE

The linear regime and the dispersion equation for a
FEL in a waveguide has been studied exhaustively by
numerous authors.”>?® Qur goal here is to develop a set
of nonlinear equations for an overmoded waveguide
which can be used to follow the time-evolution of the
electrons and the radiation field from noise to saturation.
From Maxwell’s equations,

VxE=—L19B (1)
c Ot
V><B———J+-l—a—E , @)
¢ Ot
V-E=dmp , 3)
V-B=0, @)

where E is the electric field, B the magnetic field, p the
charge density, and J the current density, we get the wave
equations,

O azE_ 4m dJ
V2E o 4mVp T o (5)
2
vip—L9B__d7moo . (6)
c? 92 c

For a cylindrical waveguide with its axis in the z direc-
tion which is also the direction of wave propagation, it is
sufficient to determine E, and B, from which the other
components of E and B can be calculated. We therefore
consider the z components of Egs. (5) and (6), given by

a1 9 ATy
V- B =T, @)
and
2
2 L8 Mg - AT yxy,, ®)
c” at c

where J, is the transverse current produced by electron
motion. The FEL has a circularly polarized undulator,
specified by a vector potential,

AW=

2
a,[xcos( f k,(z')dz")
+y sin( fokw(z ydz')], 9)

where m and —e are the rest mass and charge of an elec-
tron, respectively, a,, is the normalized vector potential,
and k,=2m/A, is the wave number of the undulator.
We take aq,, and &, to be given functions of z, neglecting
transverse variations of the undulator field since the
electron-beam radius is much smaller than the undulator
period. The equations of motion for the electron are
given by

d?’j _kxawas .
dz - Yi sind;
2
) . .
> ({cosy )sinyy; — (siny Ycosy; ) , (10)
di; 1+a2—2a,a,cosy; | '?
D gk —k, 1- 4 wCOsY,;
dz 7/?
+9¢ an
oz

Here z is used as the independent variable, y; is the rela-
tivistic : mass factor of the jth  electron;
Y= f (k,+k,)dz' —wt +¢@ is the phase of the jth elec-
tron with respect to the radiation field; ¢ is the phase
shift of the radiation field; k, =w /c is the wave number of
the signal wave and o, is the frequency; a;is the normal-
ized vector potential for the signal wave; n is the elec-
tron density, assumed to be uniform at z=0, and
®, =(4mnge?/m)'/? is the plasma frequency of the beam.
The angular brackets indicate an ensemble average over
all electrons.

We expand E, and B, in a complete set of vacuum TE
and TM waveguide modes,

Ez=m—c22a,m(z)J,(v,mr)exp(ilG)
Im
Xexp[i(k,mz—wt)] , (12)
B,=— ’":_f 2 k " Com (2T (K 7 exp(i16)
Xexplilk;,z—wt)], (13)

where J; is the Bessel function of order ! and k,,,, K,,,,
q;m» and v, are determined by the boundary conditions
(d/dr)[J, (K, ], =g =0, J;(v,,R)=0. Here R is the
radius of the waveguide, and K}, +k2, =vi, +q2,
=w?/c’. We assume that the amplitudes a,,(z) and
¢, (2) are slowly varying functions of z and neglect terms
containing their second derivatives. From Egs. (7) and
(8), we get

day,
> 2ig,,, —(—é——],(vlmr Jexp[i(160+gq;,2)]
Lm

wla
bl “exp[i(0+k,z)]

A AB(r—rb)‘ , (14)

c?
and
klm dc Cim .
k. dz ——J (K, rlexpli(l160+k;,z)]
2
@pay . d
;—expli(6+kz)] ——A—AS(r-—rb)}, (15)
c aor
where r, is the radius of the electron beam and

A={exp[—i(¢;—@)]/¥;). We now assume that the
quantity A4 is independent @ and neglect any poloidal
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asymmetry of the beam, which implies that the only sur-
viving terms in Eq. (14) and (15) are those with / =1. We
let a;,(z)=a,(2)5,;, and c,(z)=c,(2)8,, and drop all
subscripts I. We finally obtain

o, c(r ,
e R o
(16)
and
de,, iawa)f, k,K,, expli(k,—k,)z]
dz c? kX2 (R*—K,2J%K,R)

x [ Cdrro(K,R)4 . (17)

The final step required to complete the FEL equations is
to relate the quantities a; and ¢ in Eq. (10) and (11) with
the waveguide modes. This is done by using the relations
B=VX A and E=—(1/c)(3A/dt). The vector poten-
tial associated with the signal is taken in the left-
circularly-polarized form,

2

A= m: a,(r,t)[Xcos(k,z—wt+¢)

—ysinlk,z—wt +¢)] . (18)
We then find that
u(r,t)=a.e'®
k., k —k
= 2;( z Cm K JO(Kmr)el( " S)z
s

i(q,, —kJ)z

ta, %"—Jo(v,,,ne (19)

m

Equations (10), (11), (16), (17), and (19), which comprise a
complete set, are integrated numerically to describe two-
dimensional (2D) dynamics in a waveguide, both in the
exponential gain regime and at saturation. As stated in
Sec. II, the experiment uses a constant axial field for
guiding and focusing the electron beam, which has al-
most no effect on the FEL other than to enhance the
quiver motion of the electrons that is driven by the heli-
cal undulator field. This motion is included in the nu-
merical calculation of the quiver velocity (v, /c ), in the
undulator.

The results of the numerical simulation will be present-
ed with the experimental results in Sec. IV. In the next
section, we describe an analytical eigenmode calculation,
which is valid in the exponential gain regime and pro-
vides an independent benchmark for the numerical simu-
lation.

IV. LINEAR EIGENMODE ANALYSIS

The transverse profile of the electromagnetic wave
propagating self-similarly in a FEL can be obtained by a
linear analysis of the cold-fluid equations for electrons
coupled with the self-consistent Maxwell’s equations. In
this analysis, it is possible to solve for the actual eigen-
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modes (and eigenvalues) of the system without the use of
vacuum modes or of other systems of orthogonal func-
tions. The analysis clarifies the roles of the FEL interac-
tion and boundary conditions in the coupling of TE and
TM sets of modes, and provides an independent check for
the predictions of the 2D computer code. The details of
the formalism, with and without a waveguide, are de-
scribed elsewhere.?> Here we briefly review the analysis
in the presence of a waveguide. The starting point of the
analysis is the cold-fluid equations for the electrons, given
by the continuity equation,

19 _

p at(hy)-i—V (hP)=0, (20)
and the momentum equation,

JC’—% +P-VP=—(yE'+PXB) ; 21)

here P=vyv/c, v is the electron velocity, E'=(e /mc?)E,
B'=(e/mc*)B, y’=1+P-P, and h =w} /c’y is the nor-
malized fluid density. For simplicity, we consider an un-
tapered helical wiggler with the magnetic field,

B, =B, (T cos®—sind) , (22)

where (r,0,z) represents the standard cylindrical coordi-
nate system, and ®=60—k, z. We assume that the beam
is thin, i.e., k,r, <<1, and that the equilibrium flow is
given by

P=—a,(fcos®—Osin®)+(y*—1—a2)"%% . (23)

We linearize Egs. (20) and (21), assuming the P, <<P,,
and that the perturbed quantities vary much more rapid-
ly along the axis than along the transverse directions.
Any perturbed quantity 8g is represented as

+
8g(r,@,z,t)= 3 8g'"(rexpli(n®+gz—wt)],

(24)
where
9 _9 _, 9
3z 8z v3®’ (252)
8 _ 3
30 = 30 ’ (25b)
and we define
k,=q—lk, . (25¢)

We now limit ourselves to the case in which one helical
harmonic, say n =1, is dominant. In this case SE|'” and
8B" are dominant, and are coupled to 84/ ~V, P/~ 1,
and 8E;'~V. The continuity equation for a1 be-
comes

[—yw/c+(k,+k,)P,18n" D
~h[P,0/(yc)—(k,+k,)]6P!"V . (26

The momentum equation for 8P}’ ! becomes
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i[—yw/c+(k,+k,)P, 18P~V
=—y8E,'"V+(ck,/w)a,8E"" , (27
where

We now turn to Maxwell’s equations (1)—(4) in which

p'=4mp=—hy (29)
and

y=4T5=—pp. (30)
After linearization, Eq. (3) gives
i(k,+k,)8E,!~V=—ysp!!"1— hﬁ’ 8P~ . (31

Equations (26), (27), and (31) are algebraic equations for
8h!~V 8P~V and S8E;'~V. The Ith harmonic of the
perturbed transverse current is obtianed from the relation

i8J, V=874~ —QB8E"{" . (32)

where

hal(k,+k,—wP,/yc)

= . (33)
Q 2{[(k,+k,)P,—yw/cl>*—h(1+a2)}

Thus, the expressions for 8J'" are as if the system is one

dimensional. The transverse dependence, however, ap-
pears in 8p'” and 8J!”. From the I/th harmonic of Eq.
(20), and the longitudinal component of Eq. (21), it can be
shown that??

3 1-1
ar

"o _ Y
k.P,—yo/c

8p (Q8E') (34)

and
J

P

z

8J, N~ — (Q8E'"). (39

i_u—n]

k,p,—vw/c | or

From the transverse components of Eq. (5), we obtain

1 9 | BEY
r or g ar
2 12
+ w__kZ_LLJl__E’_Q SE'"=0, (36)
c? ‘ r? 4
and
19 | BEY | o, U1 |
S " o 2 k; e SE”"=0.

(37)
After further simplification, Eqgs. (36) and (37) reduce to

2 2 2
et et Yk (8B HiBE) =0 (39
r r c
and
A I
8r2+rar r2+c2 ke

X (8B, P—i8E!")=0, (39)

which are coupled by virtue of the boundary conditions,

‘e CIPNN
SE;=0, ESBz—O , (40)
at r=R. In the vacuum limit @ =0, Eq. (38) and (39)
reduce to the standard decoupled equation for 8B, and
8E, describing TE and TM modes. Using the conditions
(40) and the jump conditions at r=r2%, we obtain the

dispersion equation (for Q+0),

[7k,RJ ) (k R)Y (K 7, )= 11[sd; — 1 (57 W)y (kyry) =k Iy (ke ry My (7))
—ak RJ,(k R)J;(k R)[sJ, _(sry)Y; _(k,ry)—k, Y, _(k r, ), _(sr,)]=0, (41)

where the overdot in Eq. (37) denotes a derivative, and

k?=w?/c*—k?, (42a)

st=ki—(w/c)Q . (42b)
Here o is given aproximately by the formula

w=2k,cy*/(1+a2), (43)

well-known from one-dimensional theory. Equation (41)
can then be solved numerically to determine the eigenval-
ue.

We now compare the results of this analysis with pre-
dictions from the 2D computer code described in Sec. II.
We take the electron-beam current to be 2 kA/cm?,
r,=0.2 cm, R =0.9 cm, ¥ =2.5, and q,=0.3. Equation

(41) then gives, for =1 and w/c =32.9 cm ™!, the eigen-
value for the most unstable mode to be k, =32.8—i0.052
cm ™!, For the same set of parameters the 2D code gives
®/c=33.0cm™ ! and a growth rate of 0.056 cm ™!, which
is in good agreement with the imaginary part of k, quot-
ed earlier. It is interesting to note that if the TM modes
in the 2D code are artificially “switched off”” by setting
¢, =0, the growth rate is reduced slightly to 0.052 cm ™!,
Thus, for typical operating parameters of the Columbia
University FEL, the neglect of TM-mode coupling does
not have a large effect on the growth rate of the FEL
eigenmode in the exponential gain regime. The effect of
TM-mode coupling is more pronounced during spatial
“ring-down”” which we will describe in the next section.
Figure 2(a) shows 8E = |8E| (with arbitrary normaliza-



5086
1.5 —— FEL mode
S —-=-- TEy mode
I ——— TMy; mode
B S a
1.0+ e ( )
3 ]
0.5+
0.0
T v T T T T T T T T T T
00 O 02 03 04 05 06 07 08 09
r (cm)
0.15
~ 4
8 0.10
- p
< ~
o
o .
W 4
0.05
4
4
4
0.00

— 77—
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 o8 09
r (cm)

FIG. 2. (a) 8E of the FEL eigenmode is compared with 8F
for the TE,, and TM,; vacuum modes. The FEL mode has a
mixed character. (b) |8E,| and |8B, | of the FEL mode.

tion) of the FEL eigenmode as a function of r. The result
of the 2D waveguide code is essentially identical with this
curve. For comparison, we also show the radial profiles
of SE for the TE;, and TM,,; vacuum modes. Figure 2(b)
shows the longitudinal wave components 8E, and 8B, of
the FEL mode. We note that they are of comparable
magnitude, signifying the mixed character of the eigen-
mode.

V. EXPERIMENTAL RESULTS AND COMPARISON
WITH NUMERICAL SIMULATION

A. Linear regime of exponential growth

The experiment is first operated in the regime of ex-
ponential growth. Given the noise level of the input and
the length of the undulator, we find that the interaction
remains in the linear regime over most of the undulator
for a, =0.3. Figure 3(a) shows the wave profile that re-
sults from the numerical computation of power growth
and guiding along the electron beam in the overmoded
waveguide for a,, =0. 3, with other parameters as they are
in Table I. We start the simulation with zero initial radi-
ation field and noise generated by the random distribu-
tion of electrons in phase. The wave profile shows the ex-
pected features of exponential growth and profile narrow-
ing (which enhances the filling factor) as the wave moves
down the undulator. When the electron beam is ter-
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minated by the polyethylene beam stop, the optically
guided power is released from the beam and radiates in
the empty drift-tube waveguide, which contains the
probe. The FEL eigenmode breaks up into many vacuum
eigenmodes that display a characteristic spatial interfer-
ence (“ring-down”). Our experiment measures the spatial
profile of the ring-down. The computed ring-down
(viewed from a downstream point) is shown in Fig. 3(b).
The measurements previously reported?' are now
presented in Fig. 4, together with the prediction of theory
(indicated by solid lines). The plots from theory now con-
tain the TM as well as the TE set of modes, whereas in
Ref. 21 only TE modes were retained. The computed dis-
tribution of power taken at r =0 along the axis [Fig. 4(a)]
shows major differences with respect to the result
presented earlier [Fig. 4(a), Ref. 21], yet the fit of the data
to theory is neither better nor worse than the earlier fit.
Perhaps this can be anticipated in a highly overmoded
system such as ours, in which the ‘“sloshing” characteris-
tic of the interference pattern can be reproduced approxi-
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0.45
Radial distanc

FIG. 3. (a) Wave profile in the exponential gain regime for
a, =0.3, with other parameters given in Table I. (b) Computed
ring-down pattern for the parameters of (a) when the electron
beam is terminated at z =50 cm.
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mately even if a truncated set of modes are considered.
Figures 4(b) and 4(c), taken at the axial power minimum
and maximum, respectively, show essentially no change
in the calculated radial distribution of power when com-
pared with the corresponding curves in Ref. 21. The nu-
merical study shows the field profile at z=20 cm is near-
ly the same as that at z =0. (The experimental data are
the same as in Ref. 21.) By moving the beam stop and re-
peating the measurements, we have verified that the
profile remains self-similar. The data for the radial
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profile [Figs. 4(b) and 4(c)] display the features expected
from theory.

The theory predicts that optical guiding is weak for
a, =0.2. It is interesting to compare Fig. 4(a), obtained
by taking a,=0.3, with Fig. 5, which shows the power
on axis for a,, =0.2. The axial variation in the latter case
falls within the error bars of the data, which suggests that
the “sloshing” is much less pronounced than that ob-
served in the well-guided case.

It is useful to contrast our experiment with a similar

240 (b)
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FIG. 4. (a) Experimental data (points) compared with theory (solid lines) from Fig. 3; the experimental data are the detector signal
in millivolts, while the theory scale is arbitrary intensity units. This figure shows the dependence of intensity along the z axis behind
the termination point (z =50 cm) of the electron beam. (b) Radial dependence of the intensity at z=58 cm. (c) Radial dependence of
the intensity at z=65 cm. Dashed line, TE,;; mode only; solid line, theory curve at axial maximum.
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one by Masud et al.?®?" using the same apparatus. A

much smaller diameter (6.4 mm) waveguide was used;
however, the wavelength, beam diameter, and current
were nearly the same. One expects that optical guiding
would be comparatively unimportant in this case. It was
found that the observed growth rate agreed well with the
theory given in Ref. 25 which predicts TE;; to be the
only dominant mode in the linear regime. This could
occur only if optical guiding were not important. We
now compute the FEL eigenmode in accordance with the
analysis in Sec. III for this case. To be specific, we take
r,=0.2 cm, R=0.32 cm, y=2.5, a,=0.3, and the
current density to be 1 kA/cm?. Equation (41) then pre-
dicts @/c=28.85 cm~! and an amplitude growth rate
~0.091cm ! for the most unstable mode. In Fig. 6(a),
we plot |8B,]| and |SE, | for the FEL mode in this case for
comparison with the guided case described by Fig. 2(b).
Whereas |8B,| and |8E,| are comparable in Fig. 2(b),
|8E,| is less than 10% of |8B,| in Fig. 6(a). Hence, the
presence of TM modes is minimal in the composition of
the FEL eigenmode in the small waveguide. As shown in
Fig. 6(b), the FEL eigenmode is almost identical to the
TE,, mode, and we confirm that optical guiding is indeed
insignificant.
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FIG. 5. Dependence of intensity along the z axis behind the
termination point (z=50 cm ) of the electron beam for the case
of weak guiding (a,,=0.2). The axial variation falls within the
error bars of the data, which suggests that the “sloshing” is
much less pronounced than in the guided case [Fig. 4(a)].
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Since refractive guiding occurs in our experiment due
to the interference of many modes, we can “switch off”
the guiding effect in the computer code by decoupling
artificially the waveguide modes (that is, each mode is
made to interact with the electrons independently).
Since this “switch” is not experimentally realizable, it is
necessary to validate it by actual comparison with experi-
mental data for a weakly guided case. This has been done
in the companion paper,?? and will not be repeated here.
We compare in Fig. 7 the results of calculations for the
dependence of the power growth rate upon the undulator
field, with and without optical guiding. Without guiding,
the growth rate increases linearly with the magnitude of
the undulator field, as expected in the Raman limit. With
guiding, the growth rate increases faster, particularly at
higher pump field. The reason for this is that optical
guiding improves the filling factor (f), which in turn
enters the expression for the growth rate in 1D theory as
f172. Measurements of the growth rate, however, also in-
dicated in Fig. 7, are not sufficiently accurate to fit unam-
biguously either curve. Thus, although the experimental-
ly observed growth rate roughly validates the theory, the
weak f dependence is experimentally difficult to verify.
Nevertheless, the additional gain from optical guiding,
when integrated over the length of the undulator, results
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FIG. 6. (a) |8E,| and |8B,| of the FEL mode for the experi-
ment with a smaller waveguide of radius 0.32 cm. |8E,]| is less
than 10% of |8B, |, the FEL mode is dominantly TE,, and opti-
cal guiding is insignificant. (b) 8E of the FEL mode for the pa-
rameters of (a) compared with the vacuum TE,; and TM,,
modes. The FEL mode is almost identical to the TE,, mode.
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in an appreciable improvement in overall signal gain.
Figure 7 shows that the most rapidly growing signal
(from noise) in our experiment corresponds to the optical-
ly guided mode.

B. Saturation regime

As explained in Sec. I, refractive guiding, since it does
not rely on the presence of intrinsic gain, can occur at
saturation. In Ref. 22, the presence of guiding at satura-
tion is shown to enhance somewhat the shifts of the side-
bands (with respect to the carrier) as well as their growth
rates, though the effect of guiding at saturation is found
to be weaker than that in the exponential gain regime.
Here we report on alternate experimental attempts to ob-
serve refractive guiding at saturation.

The theory predicts that when the pump field is in-
creased to a,~0.4, the amplified wave will saturate ap-
proximately two-thirds of the way down the undulator.
To insure saturation on all shots, we use an undulator
with a slight (and unoptimized) taper (11%) beginning
half way along its total length of 70 cm; the power grows
by roughly a factor of 2 along this tapered region.

Typical experimental data for the spatial ring-down
following a beam stop are shown in Fig. 8. In Fig. 8, we
note that the axial ring-down shows a much weaker
“sloshing” behavior than that in Fig. 4(a). We give here
a possible explanation as to why it may be difficult to
have a conclusive demonstration of refractive guiding in
the presence of a waveguide. As the signal passes into
saturation, some power is lost from the optically
confined, guided profile and moves out to the wall; this is
illustrated by a numerical solution (Fig. 9) in which the
signal saturates at z=>50 cm. From there, it “‘sloshes” to
and fro in the waveguide, interfering with the electron-
radiation interaction occurring near the axis. The waves
reflected from the wall are generally out of phase with
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FIG. 7. Experimental data (points) of the power growth rate
I' as a function of @, compared with theory (solid lines). The
“guided” curve is calculated with modes coupled, the ‘“unguid-
ed” curve with modes decoupled.
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FIG. 8. Dependence of the intensity along the z axis mea-
sured from the termination point (z =50 cm, Az =0) of the elec-
tron beam (top frame) and the radial distribution of intensity at
Az =20 cm (bottom frame) at saturation.
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respect to the ponderomotive wave, and can interfere des-
tructively with the latter, causing a local detrapping of
the electrons from the ponderomotive bucket. In particu-
lar, we find that if an artifical phase shift is introduced at
some point into the ponderomotive wave, an expansion of
the downstream optical beam results. (Furthermore, the
power released from the beam upstream also interferes

0.10

0.05+

Field amplitude a

FIG. 9. Wave profile in a waveguide from start-up to satura-
tion for a,, =0.3, with other parameters given in Table 1.
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FIG. 10. Wave profile in empty space from start-up to satu-
ration. The wave profile remains approximately self-similar at
saturation.

with the radiation of the remaining guided power in the
ring-down zone, resulting in a less well-defined spatial in-
terference pattern for the experiment to detect.) On the
other hand, if the experiment were done in empty space,
Fig. 10 shows that though some power is lost from the
beam as saturation occurs, it does not return to interfere
with the FEL interaction. The profile downstream does
remain approximately self-similar as it propagates, as re-
ported by Scharlemann et al.* using shorter wavelengths.
This leads us to conclude that our failure to observe opti-
cal guiding following saturation may be an artifact of the
boundary conditions imposed by the waveguide
geometry, and that a short-wavelength FEL experiment
operating without a waveguide may find a remnant opti-
cal guiding occurring under saturation or slow growth
conditions.
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VI. CONCLUSION

In this and a companion paper,?? we have attempted to
validate the concept of refractive optical guiding by com-
paring theoretical (numerical) predictions with experi-
mental observations in the Columbia University FEL. In
the presence of a waveguide, the theory of optical guiding
has certain interesting features, and we have presented in
this paper two complementary methods—numerical and
analytical —for the theoretical study of guiding in the ex-
ponential gain regime. We show that the two methods
agree well in their predictions, and give us confidence in
extending our numerical studies to the nonlinear regime.

As in Ref. 21, we believe we have presented firm, if in-
direct, evidence of the occurrence of optical guiding
strongly influenced by refractive guiding effects in the re-
gime of exponential gain. Refractive guiding is a subtle
effect, and our approach has been to accumulate a de-
tailed corpus of theory and experimental data, each of
which adds incremental evidence in support of the con-
cept. In the saturation regime, the experimental results
presented in this paper are not conclusive, and the nu-
merical studies suggest that the reason for this has to do
with the experimental conditions, together with a weak-
ening of the guiding effect expected from theory. (Obser-
vations of the sideband shift in the saturation regime,
presented in Ref. 22, also indicate a weakening of the
guiding effect.) We have given plausible arguments as to
why some of the loss of guiding we observe at saturation
may be attributed, somewhat paradoxically, to the pres-
ence of a waveguide. Based on these physical arguments,
it is tempting to speculate that it may be possible to have
a more convincing demonstration of refractive guiding in
the saturation regime in a short-wavelength FEL experi-
mental facility.
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